Find the area of $\triangle A B C$ if A is $(2,7), B$ is $(5,1)$ and C is $(0,3)$

Method 1: Using rectangle minus three triangles
$\Delta A B C=$ Rectangle $-{ }_{\Delta} \mathrm{I}-{ }_{\Delta} \mathrm{II}-{ }_{\Delta} \mathrm{III}$
Area Rectangle $=5 \cdot 6=30$
Area ${ }_{\Delta} \mathrm{I}=\frac{1}{2}(2)(4)=4$
Area ${ }_{\Delta} \mathrm{II}=\frac{1}{2}(3)(6)=9$
Area ${ }_{\Delta} \mathrm{III}=\frac{1}{2}(2)(5)=5$
Area $\triangle A B C=30-4-9-5=12$

Method 2: Subtracting two triangles
Extend segment $A B$ so that the y-intercept is D. Find D.

$\frac{y-7(11-3)}{0-2}=\frac{7-1}{2-5}$
$\frac{y-7}{-2}=\frac{6}{-3}=\frac{-2}{1}$
$y-7=4$
$y=11$
area $\triangle \mathrm{ABC}=$ area $\triangle \mathrm{DCB}-\operatorname{area} \Delta \mathrm{I}$
area $\triangle \mathrm{DCB}=\frac{1}{2}(11-3)(5)=20$
area $\Delta \mathrm{I}=\frac{1}{2}(11-3)(2)=8$
area $\triangle \mathrm{ABC}=20-8=12$

Method 3: Two trapezoids minus one trapezoid

$$
\begin{aligned}
& \text { area } \triangle \mathrm{ABC}=\text { area } \mathrm{AEOC}+\text { area } \mathrm{ABFE}-\text { area } \mathrm{CBFO} \\
& \text { area } \mathrm{AEOC}=\frac{1}{2}(2)(3+7)=10 \\
& \text { area } \mathrm{ABFE}=\frac{1}{2}(3)(7+1)=12 \\
& \text { area } \mathrm{CBFD}=\frac{1}{2}(5)(3+1)=10 \\
& \text { area } \triangle \mathrm{ABC}=10+12-10=12
\end{aligned}
$$

Method 4: Heron's Formula where s is the semiperimeter and a, b and c are the sides of $\triangle A B C$.

$$
\begin{aligned}
& A=\sqrt{s(s-a)(s-b)(s-c)} \\
& s=\frac{a+b+c}{2}
\end{aligned}
$$

$$
\begin{aligned}
& A B=\sqrt{(7-1)^{2}+(2-5)^{2}}=6.7082 \\
& B C=\sqrt{(5-0)^{2}+(1-3)^{2}}=5.3852 \\
& A C=\sqrt{(7-3)^{2}+(2-0)^{2}}=4.4721 \\
& s=8.2875 \\
& s-a=1.57455 \\
& s-b=2.89755 \\
& s-c=3.81065 \\
& A=\sqrt{143.9995} \approx 12
\end{aligned}
$$

Method 5: Coordinate Method

Heron's Formula is derived from the following formula that is often simpler to use than the formula. The order of the coordinates is not important.
$A=\left|\frac{1}{2}\left[x_{1}\left(y_{3}-y_{2}\right)-x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{2}-y_{1}\right)\right]\right|$
$A=(2,7) \quad B=(5,1) \quad C=(0,3)$
Area $=\left|\frac{1}{2}[2(3-1)-5(3-7)+0(1-7)]\right|=\frac{1}{2}(4+20+0)=12$
Have students derive this formula using method 3 .

Method 6: Pick's Formula

$$
\text { Area }=\mathrm{I}+\frac{1}{2} B-1
$$

$I=$ Inside points
$B=$ Border points
$I=10$
$B=6$
Area $=10+\frac{1}{2}(6)-1=12$

Method 7: Distance from a point to a line.
How far is point C from $\overline{\mathrm{AB}}$? (This would be the height and $A B$ would be the base.) The formula for the distance from $\left(x_{1}, y_{1}\right)$ to the line $a x+b y+c=0$ is:
$D=\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|$
AB has equation $2 x+y-11=0$
Distance from $(0,3)$ to $2 x+y-11=0$ is $\left|\frac{2(0)+3-11}{\sqrt{4+1}}\right|=-\frac{8}{\sqrt{5}}$
$\mathrm{AB}=\sqrt{(7-1)^{2}+(2-5)^{2}}=\sqrt{45}$
Area $=\frac{1}{2} \cdot \frac{8}{\sqrt{5}} \cdot \sqrt{45}=12$

Using Coordinate Geometry to Find the Area of a Triangle

Divide the class into 7 groups. Number each group. Give coordinates of $\triangle A B C$ and have each group use a particular method to find the area. Rotate methods so that each group works 4 problems 4 ways.

| 1. $A(-1,10)$ | $B(5,2)$ | $C(9,5)$ |
| :--- | :--- | :--- | :--- |
| 2. $A(0,5)$ | $B(7,1)$ | $C(-3,-2)$ |
| 3. $A(1,1)$ | $B(1,0)$ | $C(7,-3)$ |
| 4. $A(10,4)$ | $B(-2,4)$ | $C(3,-2)$ |

Discuss which method is the easiest. The coordinate method is the easiest most often.

Ask if any of the students noticed that problem 1 is a right triangle with area $1 / 2$ leg * leg.

Why is it a right triangle? Slopes of segments $A B$ and $B C$ are negative reciprocals.

